diff --git a/sections/Auswertung.tex b/sections/Auswertung.tex index 42e3dc8..bc010ac 100644 --- a/sections/Auswertung.tex +++ b/sections/Auswertung.tex @@ -9,10 +9,10 @@ First the resolution limit has to be measured: \begin{align*} - B_{1} & = 0,3 \cdot 10⁻³ m \\ + B_{1} & = 0,3 \cdot 10^-3 m \\ B_{2} & = 0,6 \cdot 10^-3 m \\ B &= (0,45 \pm 0,15) \cdot 10^-3 m - \end{align*} +\end{align*} Using the eqation $\ref{7}$ $\epsilon$ is calculated: @@ -27,7 +27,7 @@ Using the eqation $\ref{7}$ $\epsilon$ is calculated: &= 0,31 \circ \\ \Delta \epsilon &= 0,05 \circ \\ \epsilon &= (0,26 \pm 0,05) \circ - \end{align*} +\end{align*} Since the diffraction index n for air is equal to one, the numercal aperture is equal to sin($\epsilon$) (see $\ref{8.1}$): @@ -51,4 +51,4 @@ $d_{min}$ are availalble: $d_{min}$ is a smaller value than the grid constant d. - \newpage \ No newline at end of file + \newpage diff --git a/sections/Physical-Principals.tex b/sections/Physical-Principals.tex index 61cc520..10a4d2d 100644 --- a/sections/Physical-Principals.tex +++ b/sections/Physical-Principals.tex @@ -22,7 +22,7 @@ The relationship between B and G or b and g is described in $\ref{1}$ \label{1} \begin{align*} \frac{B}{G} & = \frac{b}{g} \tag{1} - \end{align*} +\end{align*} \subsection{Magnification} @@ -38,7 +38,7 @@ of an optical intrument. The proportion of B and G can be calcuated thus: \label{2} \begin{align*} \gamma & = \frac{tan(\alpha_{2})}{tan(\alpha_{1})} \tag{1} - \end{align*} +\end{align*} \label{B} @@ -58,7 +58,7 @@ The magnification, based on the equation $\ref{2}$, can be calculated thus: \gamma_{magnifying} & = \frac{tan(\alpha-{2})}{tan(\alpha_{1})} \\ & = \frac{G/f}{G/a_{0}} \\ & = \frac{a_{0}}{f} \tag{3} - \end{align*} +\end{align*} \subsection{Microscope} @@ -92,17 +92,17 @@ Based on the equation $\ref{3}$ the calculation of the magnification of the ocul \label{3.1} \begin{align*} - \gamma_{ok} &= frac{a_{0}}{g} \\ + \gamma_{ok} &= \frac{a_{0}}{g} \\ &= \frac{a_0}{f_{ok}} \tag{3.1} - \end{align*} +\end{align*} For $\gamma_{ok}$ at the distance of $a_{0}$ ($\gamma_{ok}(a_{0})$) the equation $\ref{6}$ has to be taken into account: \label{6} \begin{align*} - frac{1}{f} &= frac{1}{g} + frac{1}{b} \tag{6} \\ - frac{1}{g} &= frac{1}{f} + frac{1}{a_{0}} - \end{align*} + \frac{1}{f} &= \frac{1}{g} + \frac{1}{b} \tag{6} \\ + \frac{1}{g} &= \frac{1}{f} + \frac{1}{a_{0}} +\end{align*} The final formula for $\gamma_{ok}$ is then as follows: @@ -135,10 +135,10 @@ The minimum distance $d_{min}$ is then calculated thus, A being the numerical ap \label{8} \begin{align*} - d_{min} &= frac{\lambda}{A} + frac{1}{b} \tag{8} \\ + d_{min} &= \frac{\lambda}{A} + \frac{1}{b} \tag{8} \\ A &= n \cdot sin(\epsilon) \tag{8.1} - \end{align*} +\end{align*} n is the refraction index and $\lambda$ refers to the wavelength of the light being used. -\newpage \ No newline at end of file +\newpage