\section{Auswertung} \subsection{Experiment 1} \subsection{Experiment 2} \subsection{Experiment 3} First the resolution limit has to be measured: \begin{align*} B_{1} & = 0,3 \cdot 10^-3 m \\ B_{2} & = 0,6 \cdot 10^-3 m \\ B &= (0,45 \pm 0,15) \cdot 10^-3 m \end{align*} Using the eqation $\ref{7}$ $\epsilon$ is calculated: \begin{align*} tan(\epsilon) & = 4,5 \cdot 10^-3 \\ \sigma tan(\epsilon) &= (\sigma B)/2 + \sigma f_{ob} \\ &= 0,19 \\ \Delta tan(\epsilon) &= 8,55 \cdot 10^-4 \\ tan(\epsilon) & = (4,5 \cdot 10^-3 \pm 8,55 \cdot 10^-4) \\ \epsilon &= 0,26 \circ \\ \Delta \epsilon + \epsilon &= arctan(4,5 \cdot 10^-3 + 8,55 \cdot 10^-4) \\ &= 0,31 \circ \\ \Delta \epsilon &= 0,05 \circ \\ \epsilon &= (0,26 \pm 0,05) \circ \end{align*} Since the diffraction index n for air is equal to one, the numercal aperture is equal to sin($\epsilon$) (see $\ref{8.1}$): \begin{align*} A & = 4,54 \cdot 10^-3 \\ \Delta A + A & = sin(\epsilon + \Delta \epsilon) \\ &= 5,41 \cdot 10^-3 \\ \Delta A &= 8,72 \cdot 10^-4 \\ A & = (4,54 \pm 0,87 ) \cdot 10^-3 \end{align*} According to $\ref{8}$, knowing that the wavelength $\lambda$ is equal to 1, all the necessary values to calculate $d_{min}$ are availalble: \begin{align*} d_{min} & = 1,21 \cdot 10^-4 m \\ d_{min} + \Delta d_{min} & = \frac{550 \cdot 10^-9 m}{sin(\epsilon - \Delta \epsilon)} \\ \Delta d_{min} &= 2,9 \cdot 10^-4 m \\ d_{min} & = (1,21 \pm 2,9) \cdot 10^-4 \end{align*} $d_{min}$ is a smaller value than the grid constant d. \newpage