MIK-Protokoll/sections/Auswertung.tex
2024-11-17 13:03:45 +01:00

54 lines
1.6 KiB
TeX

\section{Auswertung}
\subsection{Experiment 1}
\subsection{Experiment 2}
\subsection{Experiment 3}
First the resolution limit has to be measured:
\begin{align*}
B_{1} & = 0,3 \cdot 10⁻³ m \\
B_{2} & = 0,6 \cdot 10^-3 m \\
B &= (0,45 \pm 0,15) \cdot 10^-3 m
\end{align*}
Using the eqation $\ref{7}$ $\epsilon$ is calculated:
\begin{align*}
tan(\epsilon) & = 4,5 \cdot 10^-3 \\
\sigma tan(\epsilon) &= (\sigma B)/2 + \sigma f_{ob} \\
&= 0,19 \\
\Delta tan(\epsilon) &= 8,55 \cdot 10^-4 \\
tan(\epsilon) & = (4,5 \cdot 10^-3 \pm 8,55 \cdot 10^-4) \\
\epsilon &= 0,26 \circ \\
\Delta \epsilon + \epsilon &= arctan(4,5 \cdot 10^-3 + 8,55 \cdot 10^-4) \\
&= 0,31 \circ \\
\Delta \epsilon &= 0,05 \circ \\
\epsilon &= (0,26 \pm 0,05) \circ
\end{align*}
Since the diffraction index n for air is equal to one, the numercal aperture is equal to sin($\epsilon$) (see $\ref{8.1}$):
\begin{align*}
A & = 4,54 \cdot 10^-3 \\
\Delta A + A & = sin(\epsilon + \Delta \epsilon) \\
&= 5,41 \cdot 10^-3 \\
\Delta A &= 8,72 \cdot 10^-4 \\
A & = (4,54 \pm 0,87 ) \cdot 10^-3
\end{align*}
According to $\ref{8}$, knowing that the wavelength $\lambda$ is equal to 1, all the necessary values to calculate
$d_{min}$ are availalble:
\begin{align*}
d_{min} & = 1,21 \cdot 10^-4 m \\
d_{min} + \Delta d_{min} & = \frac{550 \cdot 10^-9 m}{sin(\epsilon - \Delta \epsilon)} \\
\Delta d_{min} &= 2,9 \cdot 10^-4 m \\
d_{min} & = (1,21 \pm 2,9) \cdot 10^-4
\end{align*}
$d_{min}$ is a smaller value than the grid constant d.
\newpage