Fix some small issues
This commit is contained in:
parent
1ceb7ced9c
commit
21e29590b4
@ -9,10 +9,10 @@
|
||||
First the resolution limit has to be measured:
|
||||
|
||||
\begin{align*}
|
||||
B_{1} & = 0,3 \cdot 10⁻³ m \\
|
||||
B_{1} & = 0,3 \cdot 10^-3 m \\
|
||||
B_{2} & = 0,6 \cdot 10^-3 m \\
|
||||
B &= (0,45 \pm 0,15) \cdot 10^-3 m
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
Using the eqation $\ref{7}$ $\epsilon$ is calculated:
|
||||
|
||||
@ -27,7 +27,7 @@ Using the eqation $\ref{7}$ $\epsilon$ is calculated:
|
||||
&= 0,31 \circ \\
|
||||
\Delta \epsilon &= 0,05 \circ \\
|
||||
\epsilon &= (0,26 \pm 0,05) \circ
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
Since the diffraction index n for air is equal to one, the numercal aperture is equal to sin($\epsilon$) (see $\ref{8.1}$):
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ The relationship between B and G or b and g is described in $\ref{1}$
|
||||
\label{1}
|
||||
\begin{align*}
|
||||
\frac{B}{G} & = \frac{b}{g} \tag{1}
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
\subsection{Magnification}
|
||||
|
||||
@ -38,7 +38,7 @@ of an optical intrument. The proportion of B and G can be calcuated thus:
|
||||
\label{2}
|
||||
\begin{align*}
|
||||
\gamma & = \frac{tan(\alpha_{2})}{tan(\alpha_{1})} \tag{1}
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\label{B}
|
||||
@ -58,7 +58,7 @@ The magnification, based on the equation $\ref{2}$, can be calculated thus:
|
||||
\gamma_{magnifying} & = \frac{tan(\alpha-{2})}{tan(\alpha_{1})} \\
|
||||
& = \frac{G/f}{G/a_{0}} \\
|
||||
& = \frac{a_{0}}{f} \tag{3}
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
\subsection{Microscope}
|
||||
|
||||
@ -92,17 +92,17 @@ Based on the equation $\ref{3}$ the calculation of the magnification of the ocul
|
||||
|
||||
\label{3.1}
|
||||
\begin{align*}
|
||||
\gamma_{ok} &= frac{a_{0}}{g} \\
|
||||
\gamma_{ok} &= \frac{a_{0}}{g} \\
|
||||
&= \frac{a_0}{f_{ok}} \tag{3.1}
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
For $\gamma_{ok}$ at the distance of $a_{0}$ ($\gamma_{ok}(a_{0})$) the equation $\ref{6}$ has to be taken into account:
|
||||
|
||||
\label{6}
|
||||
\begin{align*}
|
||||
frac{1}{f} &= frac{1}{g} + frac{1}{b} \tag{6} \\
|
||||
frac{1}{g} &= frac{1}{f} + frac{1}{a_{0}}
|
||||
\end{align*}
|
||||
\frac{1}{f} &= \frac{1}{g} + \frac{1}{b} \tag{6} \\
|
||||
\frac{1}{g} &= \frac{1}{f} + \frac{1}{a_{0}}
|
||||
\end{align*}
|
||||
|
||||
The final formula for $\gamma_{ok}$ is then as follows:
|
||||
|
||||
@ -135,9 +135,9 @@ The minimum distance $d_{min}$ is then calculated thus, A being the numerical ap
|
||||
|
||||
\label{8}
|
||||
\begin{align*}
|
||||
d_{min} &= frac{\lambda}{A} + frac{1}{b} \tag{8} \\
|
||||
d_{min} &= \frac{\lambda}{A} + \frac{1}{b} \tag{8} \\
|
||||
A &= n \cdot sin(\epsilon) \tag{8.1}
|
||||
\end{align*}
|
||||
\end{align*}
|
||||
|
||||
n is the refraction index and $\lambda$ refers to the wavelength of the light being used.
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user